EUROFLAG TODAY

EUROFLAG TODAY

martedì 18 dicembre 2012

Novantenni, mortalità predetta dai valori pressori più recenti
 Nei soggetti molto anziani (over 85) sia il trend della pressione arteriosa sistolica (Sbp) nei precedenti 5 anni sia il suo valore attuale contribuiscono in modo indipendente a predire la mortalità generale. Pertanto, nei singoli pazienti, occorre tenere conto di tutte le precedenti rilevazioni pressorie disponibili. È la conclusione di una studio olandese di popolazione condotto nella città di Leida (Leiden-85 plus Study). In questa ricerca, osservazionale prospettica con follow-up avviata nel 1997, è stato valutato il trend della Sbp in un campione di 271 partecipanti (74 uomini e 197 donne) tra gli 85 e i 90 anni e a 90 anni. L'endpoint primario, valutato per oltre 5 anni (in media 3,6 anni) era costituito dalla mortalità generale. Un trend decrescente di Sbp tra gli 85 e i 90 anni (> 2,9 mmHg/anno) è apparso associato a una maggiore mortalità rispetto a un trend costante di Sbp all'età di 90 anni (hazard ratio, Hr: 1,45), indipendentemente dal valore di Sbp a 90 anni. Questo effetto era più marcato nei soggetti istituzionalizzati rispetto a agli anziani che vivevano in modo autonomo (Hr: 1,87 e 1,30, rispettivamente). Dopo un'analisi con applicazione di correzioni, la stima si è però approssimata all'unità (Hr: 1,08). Da sottolineare il fatto che i soggetti di 90 anni con Sbp < 150 mmHg hanno mostrato un rischio di decesso 1,62 volte superiore rispetto ai soggetti con Sbp > 150 mmHg, indipendentemente dal trend di Sbp negli anni pregressi. Questo dato si è dimostrato valido nei soggetti sia in trattamento antipertensivo che senza terapia antipertensiva, così come nei partecipanti con o senza storia di malattia cardiovascolare o non cardiovascolare. In questo caso la stima dell'Hr si è attestata a 1,47.
 J Hypertens, 2013; 31(1):63-70

giovedì 6 dicembre 2012

Un vero viaggio di scoperta non è cercare nuove terre ma avere nuovi occhi.
A. Pazienza

Ablazione con catetere per la FA: a chi, perché e...funziona?

Molto interessante e completa una recente review sulle problematiche connesse alla possibilità di utilizzare l'ablazione trans-catetere quale trattamento "definitivo" della Fibrillazione Atriale. Interessante perché si pone delle domande pratiche: a quali pazienti? in che "stadio" della malattia? è cost-effective? Tutti quesiti che rappresentano il core del problema decisionale. Le conclusioni degli AA ed i loro messaggi principali sono così sintetizzabili:
·         non vi è dubbio che la FA rappresenti un importante fattore di rischio per l'ictus

·         il problema è se questo fattore di rischio debba essere controllato o eliminato

·         la scoperta dei potenziali elettrofisiologici che partono dalle vene polmonari e che possono sostenere la FA ha portato alla messa a punto delle metodiche di ablazione

·         l'ablazione è sempre più usata dopo il fallimento dei farmaci antiaritmici, ma la nostra capacità di giudicarne la reale efficacia è ostacolata dalla mancanza di dati a lungo termine

·         lo studio CABANA attualmente in corso, indagando un end point hard come la mortalità dopo ablazione, dovrebbe fornire ulteriori informazioni riguardo al successo di questa procedura (ClinicalTrials.gov accessed 22 Apr 2012).

·         al momento i dati disponibili portano a concludere che l'ablazione determini un beneficio clinico nei pazienti giovani, sintomatici, così come in quelli con insufficienza cardiaca ed obesi

·         ci sono prove che indicano che si tratta di una strategia conveniente

·         le attuali linee guida NICE consigliano di ricorrere all'ablazione solo nei pazienti sintomatici che non hanno risposto ad una adeguata terapia antiaritmica (National Institute for Clinical Excellence. Atrial Fibrillation: The Management of Atrial Fibrillation. NICE Clinical Guideline 36. London: NICE, 2006), ma vi sono anche prove che suggeriscono l'efficacia della metodica quale trattamento iniziale per una FA parossistica (Nielsen JC,et al. A randomized multicenter comparison of radiofrequency ablation and antiarrhythmic drug therapy as first-line treatment in 294 patients with paroxysmal atrial fibrillation. Circulation 2011;124:2369). Se, dimostrata sicura ed efficace in studi a lungo termine, l'ablazione potrà pertanto essere raccomandata sia dopo il fallimento di una adeguata terapia antiaritmica ma anche come scelta preferenziale ed iniziale, condivisa con i pazienti che soffrono di FA parossistica

·         sono necessari studi a lungo termine per confrontare il controllo del ritmo ottenuto con l'ablazione vs il controllo della frequenza ottenuto farmacologicamente

·         se il controllo del ritmo ottenibile con l'ablazione si dimostrasse superiore e conveniente, la strategia di gestione attuale richiederebbe una modificazione significativa.

Messaggi Principali:

·         Il ritmo sinusale è ovviamente preferibile alla FA, in particolare se il paziente è sintomatico

·         come trattamento di scelta nei pazienti altamente sintomatici, è preferibile ed opportuno utilizzare il controllo del ritmo

·         se un paziente è refrattario ad un adeguato trattamento antiaritmico, è opportuno prendere in considerazione l'ablazione transcatetere

·         molti episodi di FA sono asintomatici e possono passare inosservati

·         i giovani pazienti sintomatici con FA parossistica sono attualmente i migliori candidati per l'ablazione con catetere della aritmia

·         il desiderio di interrompere la terapia con warfarin non è un'indicazione per l'ablazione.


Eyre-Brook SN, Rajappan K. Catheter ablation for atrial fibrillation: who, why and does it work? Postgrad Med J 2012; 88: 604-611 doi:10.1136/postgradmedj-2012-130896

Anche in chirurgia ambulatoriale o DH indispensabile stratificare il rischio di TEV

Sempre più di frequente la chirurgia è diventata pratica ambulatoriale o di day hospital. Al momento non esistono dati relativi all'incidenza precoce (a 30 gg dall'intervento) del tromboembolismo venoso (TEV) in questo particolare setting di pazienti. Un recente studio prospettico osservazionale americano ha voluto colmare questa lacuna conoscitiva e per tale motivo, utilizzando l'enorme database dell'American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP), ha identificato più di 300.000 pazienti che dal 2005 al 2009 fossero stati sottoposti ad interventi chirurgici ambulatoriali o in DH, con lo scopo di verificare in quanti di questi fosse comparso un episodio di TEV necessitante un intervento terapeutico. Definito con una metodica statistica complessa ma efficace, il peso dei fattori di rischio indipendenti per la comparsa di un TEV era il seguente: gravidanza in corso: adjusted OR 7.80, p = 0.044
cancro attivo: OR 3.66, p = 0.005
età 41-59 anni: OR 1.72, p = 0.008
60 anni o più: OR 2.48, p <0,001
indice di massa corporea 40 kg/m2 o superiore: OR 1.81, p = 0.015
tempo operatorio 120 minuti o più: OR 1.69, p = 0.027
chirurgia artroscopica: OR 5.16, p <0.001
chirurgia interessante la crosse safena: OR 13.20, p <0.001
altra chirurgia venosa: OR 15.61, p <0.001
Gli autori dello studio hanno proposto e validato una scheda di stratificazione del rischio di TEV (vedi Figura 1 acclusa) che, utilizzata per la casistica in questione, ha consentito di verificare la correlazione fra rischio prevedibile e comparsa di episodi clinici. Nella fattispecie il tasso di comparsa di un episodio di TEV (vedi Figura 2) è risultato il seguente: circa 0.05% nei pazienti con un basso rischio calcolato (0-2 punti)
poco più dello 0.1% in quelli con rischio moderato (3-5 punti)
quasi 0.4% nei pazienti con alto rischio (6-10 punti)
oltre l'1% in coloro che avevano un punteggio superiore agli 11 punti.
Risultano ovvie le correlate decisioni terapeutiche da prendere in considerazione.

Pannucci CJ et al. Identifying patients at high risk for venous thromboembolism requiring treatment after outpatient surgery. Ann Surg 2012;255(6):1093-9

venerdì 16 novembre 2012


2009 Apr 28;61(4):290-302. Epub 2009 Feb 26.

Therapeutic strategies by modulating oxygen stress in cancer and inflammation.

Source

Department of Microbiology & Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan. fangjun@ph.sojo-u.ac.jp

Abstract

Oxygen is the essential molecule for all aerobic organisms, and plays predominant role in ATP generation, namely, oxidative phosphorylation. During this process, reactive oxygen species (ROS) including superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) are produced as by-products, while it seems indispensable for signal transduction pathways that regulate cell growth and reduction-oxidation (redox) status. However, during times of environmental stress ROS levels may increase dramatically, resulting in significant damage to cell structure and functions. This cumulated situation of ROS is known as oxidative stress, which may, however, be utilized for eradicating cancer cells. It is well known that oxidative stress, namely over-production of ROS, involves in the initiation and progression of many diseases and disorders, including cardiovascular diseases, inflammation, ischemia-reperfusion (I/R) injury, viral pathogenesis, drug-induced tissue injury, hypertension, formation of drug resistant mutant, etc. Thus, it is reasonable to counter balance of ROS and to treat such ROS-related diseases by inhibiting ROS production. Such therapeutic strategies are described in this article, that includes polymeric superoxide dismutase (SOD) (e.g., pyran copolymer-SOD), xanthine oxidase (XO) inhibitor as we developed water soluble form of 4-amino-6-hydroxypyrazolo[3,4-d]pyrimidine (AHPP), heme oxygenase-1 (HO-1) inducers (e.g., hemin and its polymeric form), and other antioxidants or radical scavengers (e.g., canolol). On the contrary, because of its highly cytotoxic nature, ROS can also be used to kill cancer cells if one can modulate its generation selectively in cancer. To achieve this goal, a unique therapeutic strategy was developed named as "oxidation therapy", by delivering cytotoxic ROS directly to the solid tumor, or alternatively inhibiting the antioxidative enzyme system, such as HO-1 in tumor. This anticancer strategy was examined by use of O(2)(-) or H(2)O(2)-generating enzymes (i.e., XO and d-amino acid oxidase [DAO] respectively), and by discovering the inhibitor of HO-1 (i.e., zinc protoporphyrin [ZnPP] and its polymeric derivatives). Further for the objective of tumor targeting and thus reducing side effects, polymer conjugates or micellar drugs were prepared by use of poly(ethylene glycol) (PEG) or styrene maleic acid copolymer (SMA), which utilize EPR (enhanced permeability and retention) effect for tumor-selective delivery. These macromolecular drugs further showed superior pharmacokinetics including much longer in vivo half-life, particularly tumor targeted accumulation, and thus remarkable antitumor effects. The present review concerns primarily our own works, in the direction of "Controlling oxidative stress: Therapeutic and delivery strategy" of this volume

1996 Apr 1;77(9):739-44.

Influence of obesity on the diagnostic value of electrocardiographic criteria for detecting left ventricular hypertrophy.

Source

Centre d'Investigations Cliniques, and the Service d'Informatique Medicale, Hôpital Broussais, Paris, France.

Abstract

Easily applicable, clinically relevant electrocardiographic criteria are needed to screen large populations for left ventricular (LV) hypertrophy. The aim of this study was to evaluate, in a population of 380 hypertensive patients of both sexes, whether obesity modified the diagnostic performance of Sokolow-Lyon and Cornell voltage criteria by comparing them with echocardiographic evaluations using different indexation methods for LV mass presentation (body surface area and various powers of the height variable). For the population as a whole, Cornell voltage was better correlated to LV mass than was Sokolow-Lyon voltage (r = 0.48 and 0.36, respectively). The poorest performance of Sokolow-Lyon voltage was observed among obese patients (best r = 0.1 and 0.21 in obese women and men, respectively). Sensitivities were assessed at a 95% specificity level. In nonobese patients, using sex-adjusted voltage values (43 and 36 mm in men and women, respectively, for Sokolow-Lyon voltage, and 28 and 25 mm for Cornell voltage), the sensitivities of Cornell voltage and Sokolow-Lyon voltage were similar in men and women (near 22% and 36%, respectively), whatever the indexation method used for LV mass. In obese patients, Cornell voltage sensitivity was similar to that of nonobese patients, whereas Sokolow-Lyon voltage had a much poorer sensitivity (<10%). For simple LV hypertrophy detection criteria, Sokolow-Lyon voltage should be avoided in obese hypertensive patients and replaced by the Cornell voltage criteria, which are not influenced by the presence of obesity.

2004 Aug;44(2):175-9. Epub 2004 Jun 28.

New gender-specific partition values for ECG criteria of left ventricular hypertrophy: recalibration against cardiac MRI.

Source

British Heart Foundation Cardiac MRI Unit, Leeds General Infirmary, Leeds, UK.

Abstract

ECG criteria for left ventricular hypertrophy (LVH) were mostly validated using left ventricular mass (LVM) as measured by M-mode echocardiography. LVM as measured by cardiac MRI has been demonstrated to be much more accurate and reproducible. We reevaluated the sensitivity and specificity of 4 ECG criteria of LVH against LVM as measured by cardiac MRI. Patients with systemic hypertension (n=288) and 60 normal volunteers had their LVM measured using a 1.5-Tesla MRI system. A 12-lead ECG was recorded, and 4 ECG criteria were evaluated: Sokolow-Lyon voltage, Cornell voltage, Cornell product, and Sokolow-Lyon product. Based on a cardiac MRI normal range, 39.9% of the hypertensive males and 36.7% of the hypertensive females had elevated LVM index. At a specificity of 95%, the Sokolow-Lyon product criterion had the highest sensitivity in females (26.2%), the Cornell criterion had the highest sensitivity in males (26.2%), and the Cornell product criteria had a relatively high sensitivity in both males and females (25.0% and 23.8%). Receiver operating characteristic curves showed the Cornell and Cornell product criteria to be superior for males whereas the Sokolow-Lyon product criterion was superior for females. Comparing the mean LVM index values of the subjects who were ECG LVH positive to the normal volunteers indicated that the ECG LVH criteria detect individuals with an LVM index substantially above the normal range. We have redefined the partition values for 4 different ECG LVH criteria, according to gender, and found that they detect subjects with markedly elevated LVM index

2012 May;30(5):990-6.

ECG detection of left ventricular hypertrophy: the simpler, the better?

Source

Cardiology-Hypertension Department, Hôpital Saint André, University Hospital of Bordeaux, Bordeaux, France. philippe.gosse@chu-bordeaux.fr

Abstract

OBJECTIVE:

ECG is commonly employed to identify left ventricular hypertrophy (LVH) and a high risk of cardiovascular events (CVE) in hypertensive patients. However, the multiplicity of the existing criteria does not simplify interpretation of the data. We compared a number of common criteria in hypertensive patients by taking as references left ventricular mass (LVM) measured by echocardiography and prediction of incident CVE.

METHODS:

The population was a cohort of 958 hypertensive patients (mean age 48 years) recruited before any treatment and having benefited from an ECG and an echocardiography. We evaluated their outcomes at regular intervals. We examined the relationships between several ECG criteria of LVH and LVM as well the occurrence of CVE.

RESULTS:

Among the various parameters tested (Sokoloff, Cornell, Cornell product) the simple measurement of the RaVL wave offered the best correlations to LVM and the best prediction of the existence of an echocardiographic LVH (receiver-operating characteristic curves). Its alterations were best correlated with the changes in LVM during the follow-up period. Moreover, this simple measurement offered the best performance for the prediction of the occurrence of CVE (123 events after a mean lapse of 12 years).

CONCLUSION:

In the interpretation of an ECG in the hypertensive patient, the single measurement of the R wave in aVL gives results at least as good as those of more complicated indices, which do not appear to contribute further to the diagnosis of LVH and the prediction of cardiovascular risk

martedì 30 ottobre 2012

SALE E DIETA


martedì 29 maggio 2012

IL BACIO "ERA" BELLO ANCHE X IL FOGLIETTO. E ERA GRANDE. NON COME ORA. ERA UN BACIO...COME UNA VOLTA. CHE UN BACIO ERA AMORE
Diabete 2, efficace mezz'ora di esercizio fisico al dì

Uno studio condotto presso l'università di Maastricht, nei Paesi Bassi, mostra che una sessione di 30 minuti di esercizi di resistenza a intensità moderata riduce la prevalenza di iperglicemia misurata il giorno successivo in pazienti affetti da diabete di tipo 2. Trenta soggetti diabetici sono stati studiati in tre occasioni, in condizioni di vita normale a eccezione di uno stretto regime alimentare standardizzato. L'omeostasi del glucosio ematico è stata controllata con un monitoraggio continuo per 48 ore, prima in assenza di attività fisica, poi con un programma di esercizi alla cyclette con un carico di lavoro al 50% del massimale in una sessione giornaliera di trenta minuti e infine con sessioni di un'ora effettuate a giorni alterni. La prevalenza di iperglicemia (>10 mmol/L) si è ridotta da una media di 7 ore e 40 minuti al giorno fino a 5 ore e 46 minuti nel protocollo di esercizi giornalieri e a 5 ore e 51 minuti quando gli esercizi sono stati eseguiti a giorni alterni. Non si sono quindi osservate differenze significative nei due programmi di attività fisica, ma entrambi si sono dimostrati efficaci. Tra i partecipanti, 16 erano in terapia con insulina, 10 con metformina,  5 con metformina combinata con sulfonilurea o tiazolidinedioni e uno non assumeva farmaci ma si curava solo attraverso una dieta: il miglioramento indotto dall'esercizio fisico è stato confermato sia nei pazienti in cura con insulina che negli altri.

Diabetes Care, 2012; 35(5):948-54, 2012

lunedì 28 maggio 2012



Focus

mercoledì 9 maggio 2012



Rivaroxaban: valida alternativa al trattamento dell'Embolia Polmonare emodinamicamente stabile

I ricercatori del programma EINSTEIN-PE hanno approntato uno studio multicentrico randomizzato, open-label, event-driven, di non inferiorità, che ha coinvolto 4.832 pazienti con embolia polmonare acuta sintomatica, con o senza trombosi venosa profonda, nei quali si è confrontato un trattamento con l'inibitore orale del Fattore Xa rivaroxaban (15 mg due volte al giorno per 3 settimane, seguiti da 20 mg una volta al giorno) con la terapia standard con enoxaparina seguita da una corretta dose di antagonista della vitamina K per 3, 6 o 12 mesi. L'esito primario di efficacia era rappresentato da una ricorrente e sintomatica tromboembolia venosa, quello di sicurezza da un sanguinamento maggiore o non, comunque clinicamente rilevante. I risultati (sintetizzati nella tabella e nella figura accluse) sono stati i seguenti:
  • il trattamento con rivaroxaban non è risultato inferiore alla terapia standard con enoxaparina e antagonista della Vitamina K nel raggiungere l'end point primario di efficacia (margine di non-inferiorità, 2.0, p = 0.003), con 50 eventi nel gruppo rivaroxaban (2.1%) vs 44 eventi nel gruppo terapia standard (1.8%) pari ad un hazard ratio di 1.12 (95% CI  da 0.75 a 1.68)
  • non significativa la differenza dei due trattamenti nei confronti dell'end point di sicurezza: sanguinamenti clinicamente rilevanti si sono avuti nel 10.3% dei pazienti del gruppo rivaroxaban rispetto all'11.4% del gruppo terapia standard (hazard ratio 0.90, 95% CI 0.76-1.07, p = 0.23)
  • tuttavia se si prendevano in considerazione i soli sanguinamenti maggiori, questi si sono verificati in modo significativamente superiore nel gruppo del trattamento standard: 52 pazienti (2.2%) vs 26 pazienti (1.1%) del gruppo rivaroxaban (hazard ratio 0.49, 95% CI 0.31-0.79, p = 0.003)
  • tassi di altri eventi avversi sono risultati simili nei due gruppi.
Le conclusioni degli autori dello studio sono state le seguenti: un regime terapeutico a dose fissa di 15 mg bid poi ridotta a 20 mg od di rivaroxaban non è inferiore alla terapia standard per il trattamento iniziale e a lungo termine dell'embolia polmonare emodinamicamente stabile, avendo tra l'altro un potenziale migliore profilo rischio-beneficio. 

The EINSTEIN-PE Investigators Oral Rivaroxaban for the Treatment of Symptomatic Pulmonary Embolism. N Engl J Med 2012, Mar 26 


Antibioticoterapia come alternativa alla chirurgia nell'appendicite non complicata

Per confrontare la sicurezza e l'efficacia di un trattamento antibiotico vs l'appendicectomia per il trattamento primario dell'appendicite acuta non complicata, alcuni epidemiologi e chirurghi dell'Università di Nottingham hanno effettuato una meta-analisi di studi randomizzati controllati con l'intento di verificare come misura dell'outcome primario le eventuali complicazioni e come misure di outcome secondari l'efficacia del trattamento, la durata del ricovero, le riammissioni ospedaliere e l'incidenza di appendiciti complicate. Sono stati selezionati 4 studi clinici randomizzati e controllati per un totale di 900 pazienti [470 in trattamento antibiotico e 430 sottoposti ad appendicectomia]. Gli schemi di terapia antibiotica adottati nei 4 studi prevedevano
  • amoxicillina ev o per os + acido clavulanico 3 grammi die per 48 ore; appendicectomia in caso di persistenza dei sintomi dopo 48 ore
  • cefotaxime 1 g bid + Metronidazole per almeno 24 ore; in caso di miglioramento clinico, i pazienti venivano dimessi con Ciprofloxacina 500 mg bid + Metronidazolo 400 mg 3 volte al giorno per 10 giorni 
  • Cefotaxime 2 g ogni 12 ore + Tinidazolo 800 mg al giorno per 2 giorni con dimissione dopo 2 giorni con Ofloxacina per os 200 mg bid + Tinidazole500 mg bid per 10 giorni.
Il trattamento antibiotico è risultato associato con un tasso di successo del 63% (277/438) ad un anno e con una riduzione del rischio relativo di complicanze del 31% rispetto alla appendicectomia (rapporto di rischio (Mantel-Haenszel fisso) 0.69 (95% CI 0.54-0.89); I2 = 0%, p = 0.004), confermata anche dall'analisi secondaria dei dati dopo la esclusione dei pazienti con crossover tra le due impostazioni terapeutiche (RR del 39% per la terapia antibiotica (risk ratio 0.61 (0.40-0.92); I2 = 0%, p = 0.02). Non sono state osservate differenze significative per l'efficacia del trattamento, la durata del ricovero o il rischio di sviluppo di appendiciti complicate. Da notare che nei 65 pazienti (20%) che avevano avuto una appendicectomia dopo la riammissione ospedaliera, in 9 vi è stata una perforazione appendicolare e in 4 una appendicite gangrenosa.
Conclusione: Gli antibiotici sono efficaci e sicuri come trattamento primario per i pazienti con appendicite acuta non complicata e pertanto un trattamento antibiotico deve essere preso in considerazione per la terapia iniziale di una appendicite non complicata.

Varadhan KK et al. Safety and efficacy of antibiotics compared with appendicectomy for treatment of uncomplicated acute appendicitis: meta-analysis of randomised controlled trials. BMJ 2012; 344 : e2156

venerdì 27 aprile 2012

Ipertensione e obesità. Come misurare?


Ipertensione nell'obeso: attenzione alla forma del bracciale, non solo alla dimensione

È nota l'importanza delle dimensioni del bracciale nella misurazione della pressione arteriosa (PA), però spesso si trascura il fatto che non è solo una questione di dimensioni, ma anche di forma del bracciale. Infatti, nonostante la configurazione del braccio sia in genere conica, soprattutto nell'obeso, vengono normalmente utilizzati bracciali e camere d'aria rettangolari (fig.1). Si sono posto questo problema alcuni ricercatori di Padova, che hanno studiato 220 soggetti con circonferenza del braccio compresa tra 22 e 42 cm. Tutti avevano una forma troncoconica del braccio e la conicità era in relazione alla circonferenza e alla lunghezza del braccio stesso. In questi soggetti sono state utilizzate 4 differenti camere d'aria cilindriche e troncoconiche di misure appropriate. Nel gruppo con una circonferenza del braccio di 37.5-42.5 cm il bracciale cilindrico sovrastimava la PA, rispetto al bracciale troncoconico, di 2.0+ 0.4/1.8+0.3 mmHg (p=0.001 e <0.001 rispettivamente). Il 15% dei soggetti classificati come ipertesi col bracciale cilindrico non lo era con il bracciale troncoconico (fig.2). Si è arrivati a differenze di 9.7/7.8 mmHg in individui con con braccia molto grosse ed un angolo braccio-avambraccio uguale o inferiore a 83°. Considerato che i dati del National Health and Nutrition Examination Survey 1999-2002 hanno evidenziato che negli US circa 15 milioni di uomini e 10 milioni di donne di età dai 40 ai 59 anni necessitano di un bracciale per obesi, possiamo farci un'idea dei numeri implicati in una sovrastima dell'ipertensione dovuta a bracciali inappropriati. Ricordiamoci dunque che nel nostro armamentario dobbiamo includere anche i bracciali troncoconici, e non solo i bracciali per obesi e per bambini.

Palatini P et al. J Hypertens 2012; 30: 530-536

Screening del tumore della mammella


Mammografia di routine: vantaggi, ma anche 'overdiagnosis'

"The earlier (that cancer is found), the better". Lo screening dei tumori, basato su questo principio, ha contribuito a salvare molte vite umane; ma alcuni studi incominciano ora a mettere in dubbio questa certezza (almeno in tutti i casi valutati). Si sta discutendo sul rischio di overdiagnosis intesa come diagnosi di una condizione clinica che non sarebbe comunque progredita nel tempo fino a determinare la comparsa di sintomi o il decesso.Il rischio di overdiagnosis è stato documentato in programmi di screening per alcuni tipi di tumore, incluso il cancro della mammella. Un recente studio basato su dati raccolti in Norvegia stima che i casi di cancro della mammella diagnosticati in eccesso siano compresi tra il 15% e il 25%. 'La mammografia potrebbe non essere sempre utile nello screening del tumore del seno in quanto non può distinguere tra forme cancerose progressive o non progressive': così afferma Kalager, autore principale dello studio. Infatti i radiologi vengono istruiti a ricercare le più fini lesioni nel tentativo di riconoscere quanti più tumori possibile e permettere così di poterli curare precocemente, ma questo studio dimostra che questa pratica ha creato problemi per molte donne per una diagnosi di tumore mammario che di fatto non avrebbe provocato sintomi o un decesso. Per questo motivo Kalager ipotizza che le donne dovrebbero essere bene informate non solo sui potenziali benefici della mammografia, ma anche sui suoi possibili effetti negativi, quali stress psicologico, biopsie, interventi chirurgici, chemioterapia od ormonoterapia per malattie che non avrebbero causato sintomi. Nello studio sono stati analizzati i dati di 39.888 donne norvegesi che avevano ricevuto una diagnosi di carcinoma mammario invasivo durante i 10 anni di un programma nazionale di screening iniziato nel 1995 (tasso di adesione pari al 77%) e due gruppi storici di confronto, costituiti da donne con diagnosi di carcinoma mammario ricevuto tra il 1986 e il 1995. Se l'esecuzione di routine di una mammografia fosse una pratica sempre favorevole - sostengono i ricercatori - si dovrebbe notare un significativo decremento dei casi di cancro mammario in stadio avanzato; ma ciò non si è riscontrato nelle donne alle quali era stata effettuata una mammografia. Si stima invece che, per ogni 2.500 donne sottoposte all'esame mammografico, circa 2.470 non riceveranno mai una diagnosi di cancro mammario e 2.499 non moriranno mai di carcinoma mammario. In altri termini, su 2.500 donne sottoposte a mammografia, si riuscirebbe a prevenire 1 solo caso di morte per cancro mammario, ma 6-10 donne ricadrebbero in una situazione di sovra-diagnosi. Il problema della overdiagnosis non è facile da affrontare: modificare la soglia per definire una mammografia anormale è fonte di rischi ed adottare un approccio del tipo 'watch and wait' può generare ansie nella donna e timori di accuse di malpractice nel medico. Sussiste comunque una responsabilità etica nel comunicare questo problema alle donne che si sottopongono a screening del tumore della mammella mediante mammografia, senza peraltro generare paure o disorientamento. 

Kalager M et al. Ann Intern Med 2012; 156(7): 491
Elmore JG and Fletcher SW. Ann Intern Med 2012; 156(7): 536

Colesterolo LDL: mito o realtà


Trattamento a livelli target di LDL-C: paradigma da abbandonare?

È in corso l'aggiornamento delle Linee Guida per il trattamento della ipercolesterolemia (ATP IV) che verrà concluso nel corso del 2012 a cura del National Heart Lung and Blood Institute (NHLBI). L'obiettivo è di promuovere una gestione integrata dell'ipercolesterolemia nell'ambito di una riduzione del rischio cardiovascolare globale. La precedente versione delle Linee Guida (ATP III) si basava su una strategia volta al raggiungimento di livelli target di LDL-C a seconda della presenza di un differente grado di rischio cardiovascolare; gli obiettivi del trattamento pertanto facevano riferimento ai valori di LDL-C (quando iniziare la terapia; quali livelli raggiungere).

In una lettera pubblicata recentemente su Circulation Cardiovascular Quality Outcomes Hayward eKrumholz si rivolgono al panel di esperti coinvolti nel 'comitato ATP IV' chiedendo loro di abbandonare il concetto di livelli target di LDL-C quale guida per il trattamento dell'ipercolesterolemia, adducendo 3 buone ragioni per giustificare la loro richiesta
  1. i trial oggi disponibili non offrono una chiara documentazione che tutti i farmaci che migliorano il profilo lipidico sono in grado di ridurre il rischio cardiovascolare; il beneficio è di fatto limitato all'uso delle statine che - come è noto - svolgono molteplici azioni 'pleiotropiche' oltre a ridurre la colesterolemia; i trial quindi evidenziano che è l'uso delle statine, e non il raggiungimento di livelli target di LDL-C, che riduce il rischio cardiovascolare; i livelli di LDL-C possono quindi essere considerati come un indicatore surrogato, al pari di altri parametri quali ad esempio l'eterogeneità delle dimensioni dell'LDL-C o il rapporto colesterolo totale/HDL-C
  2. la safety dei trattamenti con statine a dosi finalizzate al raggiungimento di livelli target di LDL-C non è mai stata dimostrata. Inoltre l'approccio basato su un trattamento a dosi target può portare a curare intensivamente pazienti a basso rischio cardiovascolare; in questi pazienti i benefici si possono osservare solo dopo molti anni di terapia, ma in un lungo periodo i rischi legati alla terapia possono sopravanzare i benefici (infatti le statine rappresentano una classe di farmaci relativamente sicura per un utilizzo di 5-7 anni, ma la sicurezza di impiego per oltre 10 anni non è mai stata accuratamente studiata)
  3. un trattamento personalizzato, individualizzato (per così dire 'ritagliato' sulle caratteristiche del paziente) è più semplice, più sicuro, più efficace e più mirato ad un approccio EBM; invece, il trattamento per raggiungere livelli target di LDL-C è basato su una estrapolazione della EBM e non è mai stato direttamente testato. Recenti simulazioni hanno evidenziato che questo modello di trattamento è deficitario, ciò anche se la riduzione dell'LDL da parte delle statine risultasse essere l'unica azione da esse esercitata (va tra l'altro considerato che nella pratica clinica corrente non viene fatta una misurazione precisa e diretta dell'LDL-C). Queste simulazioni dimostrano che le Linee Guida basate su livelli target di LDL-C possono portare in alcuni casi ad un sottotrattamento(nei pazienti ad alto rischio cardiovascolare e bassi valori di LDL-C), in altri casi ad unsovratrattamento (nei pazienti a basso rischio ed elevati valori di LDL-C).
È auspicabile, concludono Hayward e Krumholz, proporre un trattamento personalizzato, basando l'intensità della terapia con statine in accordo con il livello di rischio cardiovascolare del paziente a 5-10 anni, indipendentemente dai valori di LDL-C. Questo modello di terapia individualizzato ('taylored') è più aderente alle evidenze dei trial clinici in quanto i livelli di LDL-C non aiutano ad individuare correttamente i pazienti che potranno beneficiare del trattamento con statine. Le Linee Guida ATP IV possono pertanto rappresentare una opportunità per una maggiore aderenza alle evidenze cliniche oggi disponibili sulla riduzione del rischio cardiovascolare mediante farmaci in grado di ridurre le concentrazioni ematiche di lipidi; ciò potrà in prospettiva ridurre i sottotrattamenti ed i sovratrattamenti promuovendo un uso più appropriato delle statine. 

HaywardRA and Krumholz HM. Circ Cardiovasc Qual Outcomes 2012; 5: 2-5

venerdì 6 aprile 2012

DIAGNOSTICA NON UTILE, FORSE DANNOSA

Usa: nel mirino pratiche inutili e da tagliare

Sono almeno 45 le pratiche mediche, diagnostiche e terapeutiche, il cui uso deve essere ridimensionato, con l'obiettivo di eliminare prescrizioni spesso non necessarie. La lista è stata stilata da nove società scientifiche statunitensi e sarà formalizzata in un documento ufficiale a breve. Il presupposto è che l'applicazione di una prestazione non basata sulle evidenze scientifiche non solo contribuisce a fa lievitare i costi sanitari, ma talvolta può danneggiare la salute di un paziente, come per esempio l'esposizione a radiazioni eccessive, nel corso della diagnostica per immagini o le complicazioni di un intervento chirurgico dopo un falso-positivo risultato del test. Molti dei test che si tenterà di disincentivare sono proprio le diagnostiche per immagini, l'Asco, per esempio, chiede agli oncologi di non eseguire la tomografia ad emissione di positroni, la tomografia computerizzata, e la scintigrafia ossea radionuclidi nella stadiazione del cancro alla prostata con un basso rischio di metastasi, poiché non ci sono prove che suggeriscono che tali scansioni migliorare la diagnosi del tumore metastatico o sopravvivenza. Anche l'American college of cardiology invita gli specialisti a evitare l'uso di tecniche sofisticate nei pazienti asintomatici, mentre l'Associazione dei radiologi sta cercando di convincere i propri iscritti a non fare Tac e risonanze per semplici mal di testa. E, sul fronte dei farmaci, l'American gastroenterological association condanna l'uso troppo disinvolto di farmaci contro il reflusso gastroesofageo, un problema presente anche in Italia, dove secondo vari rapporti si abusa degli ace-inibitor

martedì 3 aprile 2012

ASA e Cancro

L’Asa nella prevenzione e nel trattamento del cancro

Acido acetilsalicilico (Asa) e cancro: nuove evidenze pubblicate in una triade di studi, coordinati da Peter Rothwell dell’università di Oxford, supportano un ruolo del farmaco nella riduzione del rischio di alcuni tumori e forse nel trattamento delle metastasi

Tre articoli, pubblicati su Lancet e Lancet Oncology e coordinati da Peter Rothwell dell’università di Oxford, aggiungono nuove evidenze all’ipotesi che l’assunzione giornaliera di acido acetilsalicilico (Asa) possa aiutare nella prevenzione e forse anche nel trattamento del cancro. Nel primo studio sono analizzati i dati individuali di pazienti coinvolti in 51 trial randomizzati di Asa vs non Asa nella prevenzione di eventi vascolari. Nel secondo articolo si è analizzato l'effetto dell'Asa sulle metastasi; i dati sono stati raccolti da 5 grandi trial randomizzati con Asa 75 mg/die o più vs controllo per la prevenzione di eventi vascolari, durante i quali sono stati  diagnosticati i secondarismi. Anche il terzo studio analizza l'effetto dell'Asa sulle metastasi, attraverso una revisione sistematica di trial osservazionali vs trial randomizzati (Rct). Questo confronto è stato effettuato in quanto gli Rct con Asa hanno chiaramente stabilito la riduzione di rischio di ca colorettale (42%), di vari altri tumori solidi e di metastasi, ma non hanno il potere statistico per stabilire gli effetti su forme di cancro meno comuni o che colpiscono le donne.

Il primo studio
Nel primo articolo, gli autori hanno preso in considerazione 51 trial che hanno coinvolto complessivamente oltre 77 mila pazienti. Su una coorte di 69.224 soggetti, l’utilizzo regolare di Asa si è associato a una riduzione della mortalità per cancro del 15% nei primi cinque anni, che è salita al 37% nei trial effettuati su periodi più lunghi. La mortalità complessiva non dovuta a eventi vascolari è scesa del 12%. In sei trial con 35.535 soggetti, l’assunzione quotidiana di piccole dosi di acido acetilsalicilico per almeno tre anni ha comportato una diminuzione del 25% dei casi di cancro nelle donne e del 23% negli uomini. Nell’uso dell’asa, l’effetto benefico nella prevenzione di gravi eventi cardiovascolari è inizialmente controbilanciato da un aumento degli episodi di emorragia, ma entrambi gli effetti si riducono con somministrazioni prolungate, lasciando soltanto una riduzione del rischio di tumori che gli autori hanno calcolato in 3.13 ogni 1000 pazienti all’anno.

Il secondo studioIl secondo studio ha incluso 17.285 persone che sono state seguite per oltre sei anni. L’assunzione di almeno 75 mg di asa al giorno ha avuto un effetto inibitorio nella formazione delle metastasi, che si sono ridotte del 36%. L’effetto più rilevante si è avuto relativamente al rischio di adenocarcinoma metastatico che è stato abbattuto del 46%. Età e sesso non hanno influito sui risultati, mentre i benefici maggiori si sono avuti nel gruppo di fumatori. Un dosaggio basso e una formulazione a lento rilascio, preparata allo scopo di inibire la funzionalità piastrinica ma con scarsa biodisponibilità sistemica è stata altrettanto efficace dell’Asa in alti dosaggi. I risultati suggeriscono che l'acido acetilsalicilico potrebbe aiutare nel trattamento di alcuni tumori e che può essere utilizzato in interventi farmacologici specifici per prevenire le metastasi a distanza.

Il terzo studioIl terzo articolo riporta gli esiti di una revisione sistematica delle pubblicazioni scientifiche che, dal 1950 al 2011, hanno analizzato le associazioni tra Asa e diversi tipi di cancro. Anche in questo caso l’utilizzo regolare dell’Asa ha comportato a un rischio ridotto; in particolare, la probabilità di sviluppare cancro e metastasi nel colon-retto è scesa del 38%. Diminuzioni analoghe si sono osservate nel rischio del tumore esofageo, gastrico, biliare e del seno. Gli effetti più consistenti hanno riguardato i tumori gastrointestinali.

The Lancet, Early Online Publication, 21 March 2012 doi:10.1016/S0140-6736(11)61720-0
The Lancet, Early Online Publication, 21 March 2012 doi:10.1016/S0140-6736(12)60209-8
The Lancet Oncology, Early Online Publication, 21 March 2012 doi:10.1016/S1470-2045(12)70112-2

mercoledì 28 marzo 2012

Grazie

Ti ricordo sempre di rimanere cosi come ti sei sempre  mostrato "uomo  di scienza, ma sopratutto umano" 
Giovanni Puccio, Ricercatore e Uomo di Scienza.

martedì 27 marzo 2012

Oxidative Stress in Heart Failure: Current Understanding and Prospective

Oxidative Stress in Heart Failure: Current
Understanding and Prospective
OSxinidgaatli,v KehSatpreers,s PaanldacHe,eaanrtd FKauilmuraer
Pawan K. Singal, Neelam Khaper, Vince Palace,
and Dinender Kumar
Institute of Cardiovascular Sciences, St. Boniface General
Hospital Research Centre and Department of Physiology,
Faculty of Medicine, University of Manitoba, Winnipeg. Canada
Abstract. Our knowledge of the pathophysiology of heart
failure has advanced far beyond the classic concept of the
hemodynamic overload model and associated neurohumoral
changes. Current interest lies in understanding the fundamentals
of cellular defects to identify new molecular targets
for therapies. Some of the new target sites being explored
are in_ammatory cytokines, nitric oxide, oxidative
stress and apoptosis during the remodelling processes such
as cardiac hypertrophy and dilation. The present review
provides an overview of the chemistry/biochemistry of free
radicals as well as a discussion of some defense mechanisms
that have evolved and adapted to combat these toxic oxygen
species. The probable role of oxidative stress in the
pathogenesis of heart failure both from animal data and
heart failure patients is also presented.
Key Words. oxygen radicals, antioxidants, cardiac dysfunction
The Oxygen Story
Although we have witnessed a profound development
in the understanding of oxygen toxicity in heart disease
in the past three decades, the story of oxygen
toxicity started more than two centuries ago [1]. It was
Lavoisier, in 1785, who made the ~rst observation that
oxygen has two main effects, i.e. it supports life but it
also has toxic side effects [2]. More than a century later,
in 1899, Lorrain Smith demonstrated that increased
oxygen tension results in lung congestion in mice, rats
and pig [3]. At the beginning of the twentieth century,
Gomberg demonstrated the presence of triphenylmethyl
molecule as a radical species in organic chemistry
[4]. Subsequently, it was theorized that the damaging
effects of O2 were due to the formation of the
superoxide anion [5].
The pioneering work of McCord and Fridovich regarding
the discovery of superoxide dismutase [6], inspired
biologists and clinicians to study the role of free
radicals in biology and medicine. Thus, a large body
of evidence has accumulated showing that biological
systems are capable of producing a variety of reactive
oxidants which play an important role in various human
diseases [7,8]. Animal studies on catecholamineinduced
cardiomyopathy [9], adriamycin-induced
cardiomyopathy [10] and ischemia-reperfusion injury
[11] have now provided solid evidence for the role of
free radicals in the mediation of cardiac injury [1,12].
The present review provides some basic information
on free radicals and antioxidants and their signi~cance
in the pathogenesis of heart failure.
Oxygen Free Radicals
Free radicals are highly reactive atoms or molecules
with an unpaired electron in their outer orbits. The
production of free radicals occurs either by the addition
or by the removal of an electron in a reduction/
oxidation reaction. Since oxygen has two electrons
with parallel spin in its outermost shell, it is
characterized as a diradical which requires four electrons
to be completely reduced to water [13–15]. Oxygen
is also the terminal acceptor of electrons for oxidative
phosphorylation and this tetravalent reduction
is associated with the production of high energy phosphates
(Fig. 1). However, sequential univalent reduction
results in the formation of reactive oxygen intermediates
[7,8,13–15]. In the univalent reduction
pathway, the addition of a single electron to molecular
oxygen results in the production of superoxide anion
radical (O2
2?). The addition of another electron to the
O2
2? results in the formation of peroxide anion which
protonates to form hydrogen peroxide (H2O2). The latter
is not a radical by itself, but is capable of causing
cell damage by interacting with transition metals such
as iron. A single electron reduction of H2O2 results in
the formation of the hydroxyl radical (?OH) which is
highly reactive, has an extremely short half-life, and
therefore has a very limited diffusion capacity [13–15].
The addition of a fourth electron ~nally results in the
formation of water. The ~rst excited state of O2 is a
singlet oxygen (1O2) which can also initiate oxygen
Address for correspondence: Dr. Pawan K. Singal, Institute of
Cardiovascular Sciences, St. Boniface General Hospital Research
Centre, 351 Tache Avenue, R3022,Winnipeg, MB R2H 2A6, Canada.
Email: psingal@sbrc.umanitoba.ca
111
Heart Failure Reviews 1999;4:111–120
© Kluwer Academic Publishers. Boston. Printed in U.S.A.
radical chain reactions [13,14]. This univalent electron
reduction reaction is illustrated in ~gure 1.
Reactive oxygen intermediates such as O2
2?, H2O2,
?OH and 1O2 are called activated oxygen species and are
collectively known as partially reduced forms of oxygen
(PRFO) [13]. Superoxide radical reacts with nitric
oxide during reperfusion to form peroxynitrite which
also has a harmful effect by opposing the vasodilatory
effect of nitric oxide [16]. These reactive species can
interact with macromolecules and initiate free radical
chain reactions resulting in membrane and cell damage
[13–15,17].
Free Radical Mediated Cell Injury
The targets of free radical attack are the cell membranes
and subcellular organelles. The lipid peroxidation
chain reaction is initiated by the removal of a
hydrogen atom from the unsaturated site in a fatty
acid resulting in the production of a lipid radical. This
radical can further react with other neighbouring
polyunsaturated fatty acids (PUFA) to propagate the
reaction [13,18]. The addition of an oxygen molecule
to these lipid radicals results in the formation of lipid
peroxides. Free radical-induced lipid peroxidation has
been suggested to alter membrane structure and function
[13–15]. Considerable evidence also suggests that
PRFO can modify protein structure and function ultimately
affecting cell metabolism. In this regard, proteins
rich in sulphydryl groups are highly susceptible
to free radical attack [13]. In the myocardium, oxygen
radicals have been shown to effect Na1/Ca11 exchange,
Na1-K1 ATPase and Ca11 ATPase activities
[19–22]. Free radicals can also attack the nucleic acids
by producing base damage, single strand breaks, adducts
and chromosomal aberrations. Such modi~cations
have been shown to cause cellular abnormalities
such as mutations and cell death [12–15].
Fig. 1. A diagramatic representation of the production of oxygen free radicals by univalent reduction pathway. Different antioxidants
(enzymatic and non-enzymatic) in the biological system may offer protection against free radical-induced injury.
112 Singal, Khaper, Palace, and Kumar
The Antioxidant Defense System in
the Heart
Under normal physiological conditions, the tissue concentration
of free radicals is maintained by a system of
enzymatic and non-enzymatic antioxidants that have
evolved and been conserved during the evolution of
aerobic life and constitute “antioxidant reserve” in the
heart [17].
Enzymatic Antioxidants
Superoxide dismutase (SOD)
This enzyme is the ~rst line of defense against free radical
attack. There are several different types ofSODthat
differ based on the metallic prosthetic group attached
within the protein structure. The most common forms
are CuZnSOD (molecular weight 32,000) which is present
in the cytoplasm and MnSOD (molecular weight
80,000) found in the mitochondria. Superoxide dismutase
activity has been reported to be signi~cantly less in
the heart than in the liver [23–25]. It was the discovery
of SOD which led to the realization that O2
2? is formed in
vivo in living organisms [6]. Two superoxide anions can
react together to produce a spontaneous dismutation,
however, this reaction is much faster in the presence of
SOD (23109M21 sec21) [13,23–25].
Glutathione peroxidase
This selenium-dependent enzyme (molecular weight
~84,000), which is present mainly in the cytoplasm, represents
the second line of defense against free radicalmediated
damage. It catalyzes the reduction of hydrogen
peroxides using glutathione (GSH) as a source of
reducing power and forming oxidized glutathione
(GSSG), water and/or alcohol. This enzyme is present in
relatively high concentrations in the human heart
[13,23,25] and is therefore considered an important antioxidant
enzyme in that organ. A non selenium-dependent
form of GSHPx, which is non-speci~c to H2O2, but
which dismutates organic peroxides is also present [26].
Catalase
This enzyme (molecular weight 240,000) is also very
important in the metabolism of hydrogen peroxide produced
by SOD. Present at relatively low concentrations
in the heart, it converts H2O2 to water and oxygen.
However, the difference between catalase and
glutathione peroxidase is that GSHPx is more effective
at low concentrations of H2O2, i.e., in lM range,
whereas catalase is more effective at the mM concentrations
of H2O2 [13,15,27].
Non-enzymatic antioxidants
Non-enzymatic antioxidants include vitamins such as
tocopherols, ascorbate and carotenes as well as other
biological molecules including glutathione, uric acid
and metal binding proteins.
Vitamin E
Vitamin E functions as one of the major antioxidant
defense systems in our body. Vitamin E is a generic
term that includes a group of eight structurally related
compounds. These are further sub-divided into two
groups: tocopherols and trienols. Of these, d-a-tocopherol
is the most common type of vitamin E absorbed
from the human diet [28]. It is a strong biological antioxidant.
Because of its lipophillicity, vitamin E offers
maximum protection against free radical attack in cellular
and subcellular membranes. it reacts with free
radicals, yielding lipid hydroperoxides which can be
removed by the GSHPx enzyme system. In this reaction,
vitamin E donates a hydrogen atom, resulting in
the generation of a hydroperoxide and vitamin E radical.
This effectively terminates lipid peroxide-mediated
chain reaction and is therefore called a “chain
breaking antioxidant” [1,13,28–30]. Vitamin E also
functions synergistically with ascorbic acid to terminate
free radical chain reactions. Recent studies have
reported a new role for vitamin E that is independent
of its antioxidant property. These include inhibition of
smooth muscle cell (SMC) proliferation and growth
during atherosclerosis, occurring mainly as a result of
its ability to activate the release of TGF-b [31].
Vitamin C
Vitamin C is a water-soluble molecule which quenches
reactive oxygen metabolites directly, with the resultant
formation of dehydroascorbate. Vitamin C is also
thought to play an important role in the regeneration
of a tocopherol. It is present in micromolar concentrations
in the cytoplasm as well as in serum [13,32].
b carotene
b carotene, a precursor of vitamin A, is known to
quench active oxygen species. These reactions operate
maximally at low-oxygen tension as compared to vitamin
E which reacts at high oxygen tension [33].
Epidemiological studies have shown that increased
levels of b carotene and other carotenoids are associated
with a decreased risk of cardiovascular diseases
[34,35].
Glutathione
Glutathione is a tripeptide which is present in high
concentrations in the majority of the eukaryotic cells.
One of its important functions is to protect cells
against peroxides generated during aerobic metabolism.
It undergoes redox cycling between the reduced
(GSH) and oxidized (GSSG) forms [13,36,37]. In the
heart, glutathione is predominantly (.95%) in the
GSH form. It also acts as a cosubstrate for GSHPx
and plays an important role in defending against free
radical-mediated lipid peroxidation. This results in the
Oxidative Stress and Heart Failure 113
increased formation of GSSG. Depletion of GSH to
20–30% of its normal concentration renders the cell
susceptible to free radical attack [38,39]. The redox
ratio, which is the ratio of reduced to oxidized glutathione
(GSH/GSSG) is used as a sensitive index of
oxidative stress. Speci~cally, an increase in the redox
ratio indicates reduced oxidative stress, and vice versa
[1,13–15].
Other Biological Molecules
Uric acid, a waste product of purine metabolism, has
been shown to directly interact with ?OH and prevent
oxidation [40], suggesting that there is antioxidant potential
for this molecule in biological systems [13]. Iron
chelators, such as desferrioxamine, inhibit lipid peroxidation
and reduces the injury associated with ischemia-
reperfusion [41,42]. Ubiquinone also acts as a
potent inhibitor of lipid peroxidation by directly
quenching free radicals [43]. Various metal binding
proteins such as ferritin, transferrin, metallothioneins
and ceruloplasmin are also known to inhibit lipid peroxidation
[13,44].
Methods of Measuring Free
Radical-Mediated Damage
Free radical-mediated damage includes oxidative
modi~cation of cellular proteins, lipids and nucleic acids.
Lipid peroxidation is a free radical-mediated process,
which involves the formation of lipid peroxides
within cell membranes and organelles [13,44,45]. Lipid
peroxidation is detected through the estimation of
malondialdehyde (MDA) either by UV light, HPLC or
the thiobarbituric acid (TBA) method [13,45,46]. Direct
detection of free radicals is done by ESR spectroscopy,
although with this technique it is not possible to detect
low concentrations of free radicals [13]. Other methods
of assessing oxidative stress include determination of
diene conjugates, measurement of gases such as ethane,
pentane and isoprotanes in exhaled air, measuring
the redox ratio and the content and activity of endogenous
antioxidants and quantifying lipid hydroperoxides.
Although the MDA assay has been shown to lack
speci~city, it may detect saturated and unsaturated
aldehydes as well as other non lipid-related substances
[46], when used in conjunction with studies of the redox
ratio as well as antioxidant activity, it provides meaningful
information [1,12].
Oxidative Stress and Antioxidants in
Heart Failure
The classic de~nition of oxidative stress includes “a disturbance
in the prooxidant and antioxidant balance, in
favour of the former” [47]. The most common pathological
conditions that are attributed to oxidative stress
mediated damage are atherosclerosis, diabetes, cancer,
arrhythmia, rheumatoid arthritis, in_ammatory bowel
disease, and several neurodegenerative diseases. In
fact, this list of pathological conditions related to oxidative
stress continues to grow. In recent years, substantial
evidence has accumulated from acute and chronic
studies to suggest the role of antioxidants and oxidative
stress in the pathogenesis of heart dysfunction and
failure both in animal studies and from clinical trials
[12,13,25]. Early studies on catecholamine-induced
cardiomyopathy [9,18], adriamycin-cardiomyopathy
[10] and ischemia-reperfusion injury [11] provided the
basis for further investigation on understanding free
radical involvement in cardiac injury [1,12,13].
Acute Studies
Ischemia-reperfusion (I/R) is one of the most extensively
studied models of acute heart failure. Increased
free radical production and depressed antioxidant reserve
has been documented to have serious functional
consequences after I/R. Many studies have reported
the production of free radicals in reperfused hearts in
animals [25,48,49] and humans [50,51]. Studies on isolated
perfused rat hearts showed increased production
of H2O2 during ischemia as well as early reperfusion
[52]. An inverse correlation between oxidative stress
and cardiac function has also been documented in patients
who were subjected to global ischemia and
reperfusion during coronary artery bypass graft surgery
[53]. In isolated perfused rabbit hearts, a decline
in developed force during ischemia was accompanied
by a progressive decline in tissue glutathione content
and in the redox ratio indicating increased oxidative
stress [23]. A decrease in non-enzymatic antioxidants
such as tocopherol, retinol and ascorbic acid and redox
ratio and an increase in lipid peroxides has also recently
been reported in rat hearts subjected to 45 min
of ischemia and 15 min of reperfusion [54]. A reduction
in infarct size by SOD and catalase administration was
also reported in dogs that underwent 90 min of ischemia
and 24 hrs of reperfusion [55]. Similarly, another
study using transgenic mice, which overexpressed
MnSOD, demonstrated improved cardiac
function and decreased release of lactate dehydrogenase
in mice hearts subjected to ischemia-reperfusion
[56]. Lack of protection with antioxidants has also
been reported in some studies. SOD was found ineffective
in modulating ischemia reperfusion-induced
changes in pig hearts [57].
There is now overwhelming evidence that oxidative
stress also plays a major role in myocardial stunning
[11]. It has recently been suggested that approximately
80–85% of stunning can be attributed to free
radicals and the rest (15–20%) is due to Ca11 overload
[58]. Antioxidant therapy suppressed the production of
free radicals and attenuated myocardial stunning, suggesting
a cause and effect relationship [11,59]. An ele-
114 Singal, Khaper, Palace, and Kumar
gant study by Li and colleagues, using adenovirus-mediated
gene transfer technique to introduce SOD in the
rabbits, demonstrated protection against myocardial
stunning [60].
Chronic Heart Failure
Catecholamine-induced cardiomyopathy
Increased plasma levels and decreased tissue levels of
catecholamines have been reported in acute MI and
heart failure conditions [61]. Excess catecholamines
have been shown to cause arrhythmias as well as
cardiomyopathy [9]. Production of free radicals upon
autooxidation of catecholamines play a critical role in
cardiomyopathy [9,18]. A recent study reported increased
lipid peroxidation in isoproterenol administered
rat hearts [62]. Pretreatment of rats with vitamin
E reduced catecholamine-induced arrhythmia and
other functional changes [63]. Conversely, animals fed
a vitamin E de~cient diet were found to be more susceptible
to adriamycin- [64] and catecholamine-induced
cardiomyopathic changes [18].
Adriamycin Cardiomyopathy
It is now well established that adriamycin
cardiomyopathy is associated with increased free radicals
and decreased antioxidant status in the heart
[65–68]. Direct evidence for free radical involvement
was provided by studies which showed that vitamin
E-treated mice were more resistant to adriamycin
cardiotoxicity [69]. Moreover, rats maintained on a vitamin
E de~cient diet were more susceptible to
adriamycin cardiotoxicity [10,64]. Treatment with
probucol, an antioxidant as well as a lipid-lowering
drug, modulated the pathogenesis of heart failure due
to adriamycin [66,67].
Diabetic Cardiomyopathy
Evidence is available to suggest the role of increased
oxidative stress and depressed antioxidant enzyme activities
in the pathogenesis of diabetic cardiomyopathy.
A decrease in myocardial SOD and catalase activity
and an increase in oxidative stress has been demonstrated
in STZ-induced diabetic rats [70]. Furthermore,
probucol treatment in these rats resulted in improved
cardiac function [70]. Similarly, some other
studies reported reduced oxidative stress upon vitamin
E supplementation in animals and patients [71–73].
Hypertrophy and Heart Failure
An increase in endogenous antioxidant enzyme activities
and a decrease in lipid peroxidation have been
reported in the hypertrophy stage induced by chronic
pressure overload in rats [74,75] and guinea pigs
[76,77]. Myocytes isolated from hypertrophied rat
hearts also showed increased antioxidants and reduced
lipid peroxidation [78]. The heart failure stage in
guinea pigs was characterized by depressed cardiac
function, dyspnea, as well as lung and liver congestion.
At this stage, a signi~cant decline in myocardial SOD
and GSHPx activities and a decrease in the redox ratio
were indicative of increased oxidative stress [76]. Antioxidant
treatment of the guinea pigs with vitamin E
decreased oxidative stress and delayed the occurrence
of heart failure [77]. In a chronic volume overload
model in dogs, decrease in contractility was associated
with an increase in MDA and a decrease in antioxidant
enzyme activity. Vitamin E treatment modulated some
of these changes [79].
Myocardial Infarction and
Congestive Heart Failure
Recent data from our laboratory have demonstrated
the role of oxidative stress in the pathogenesis of heart
failure following myocardial infarction (MI) [1,12].
Changes in myocardial antioxidants as well as oxidative
stress have been described in the surviving myocardium
of rats subjected to MI. These changes correlated
with cardiac function at different stages of failure
[80]. In this study, maintenance of hemodynamic function
in early stages (non-failure stage) was accompanied
by a signi~cant decrease in oxidative stress and
lipid peroxidation while the antioxidant reserve was
maintained. In late stages, where hemodynamic function
was depressed, the myocardial antioxidants
GSHPx, catalase, SOD and vitamin E were also
signi~cantly decreased while oxidative stress was increased
[80]. In addition to the myocardium, the levels
of vitamin E and A were also depleted in the storage
organs liver and kidney in rats with severe heart failure
[81]. Supplementation of these rats with vitamin E
before subjecting them to coronary artery ligation surgery
modulated these changes [81].
In a study of regional changes in the two ventricles
during the sequelae of heart failure, the antioxidant
de~cit and an increase in oxidative stress occurred ~rst
in the left ventricle [80]. In moderate to severe heart
failure stages, these changes also occurred in the right
ventricle [82]. Thus, oxidative stress and antioxidant
changes correlated with depressed cardiac function in
the respective ventricles. In another study, using the
same animal model, we reported that improved cardiac
function after treatment with the afterload reducing
drugs captopril or prazosin was related to the maintenance
of myocardial endogenous antioxidant status and
decrease in oxidative stress [83,84].
Antioxidant vitamins such as vitamin C, carotenoids
and vitamin E have been shown to decrease lipid peroxidation
and reduce atherogenesis and the risk of
coronary heart disease. Pretreatment with vitamin E
limited myocardial necrosis [85–87] while combined
Oxidative Stress and Heart Failure 115
pretreatment with vitamins E and C in ischemia-reperfusion
settings was found to protect the myocardium
and reduce the infarct size in pigs [88]. On the other
hand, pigs supplemented with oral vitamin E did not
show reduction in infarct size after ischemia-reperfusion
[89].
Clinical Studies
An increase in oxidative stress has recently also been
documented in heart failure patients. Malondialdehyde
levels were found to be signi~cantly higher in congestive
heart failure patients [90–92]. Increased breath
pentane (a byproduct of lipid peroxidation) levels were
reported in exhaled air of CHF patients and treatment
with captopril attenuated this rise and improved the
patient’s clinical condition [93,94]. Furthermore, it has
also been demonstrated that the increase in lipid peroxidation
correlates with the severity of heart failure
[92,95,96]. In addition to an increase in free radical
activity, a decrease in enzymatic and non-enzymatic
antioxidants has also been reported in patients with
congestive heart failure [90–92,96]. In another recent
study, Yucel and colleagues reported a signi~cant decrease
in blood glutathione and erythrocyte SOD activity
and an increase in lipid peroxidation in dilated
cardiomyopathic heart failure patients [97]. All of these
clinical studies provided strong support for the involvement
of oxidative stress in the pathogenesis of
heart failure.
Various clinical trials have examined the bene~cial effects
of antioxidant vitamins in MI and heart failure
conditions. The Health Professional Follow-up Study
[98] and the Nurses Health Study [99] found a decrease
in the incidence of coronary artery disease in men and
women supplemented with vitamin E. In another
study, a cocktail containing antioxidant vitamins A, C,
E and b-carotene resulted in a decrease in oxidative
stress as well as the infarct size in MI patients [100].
The Cambridge Heart Antioxidant Study (CHAOS)
reported a substantial decrease in the incidence of MI
in patients receiving vitamin E [101]. On the other
hand, some studies found no correlation between serum
alpha-tocopherol concentration and subsequent
episodes of MI on cardiovascular disease related death
[102,103].
Oxidative Stress, Apoptosis and
Heart Failure
Although the molecular mechanisms involved in initiating
oxidative stress are not known, some recent
studies have suggested the role of transcription factors
such as NFjB and cytokines in linking oxidative stress
to remodelling processes, such as apoptosis (Fig. 2).
Findings from several in vitro studies and animal models
suggest that apoptosis occurs in response to ischemia-
reperfusion, myocardial infarction, and chronic
pressure overload [104–107], all of which are conditions
that generate oxidative stress [12,13]. More recently,
the loss of myocytes through apoptosis or programmed
cell death, has been reported in the infarct regions of
myocardium from MI patients [108] as well as in patients
with end-stage heart failure [109,110]. The importance
of oxidative stress in apoptosis is also
con~rmed by the observation that knock-out mice lacking
MnSOD die early due to cardiomyopathy as compared
to normal mice [111]. Mechanistic investigations
of apoptosis suggest that tumor suppression protein
p53 triggers and Bcl2 inhibits the process in cardiomyocytes
[107,112]. The mechanism of action of Bcl2 for the
prevention of apoptosis has also been suggested to be
mediated by an antioxidant pathway whereby Bcl2
gene product interacts with MnSOD and inhibits apoptosis
[113]. Cytokines as potent inducers of apoptosis
have also recently been suggested in CHF conditions
[114]. Although the role of oxidative stress in apoptosis
and heart failure patients have been documented, the
exact contribution of apoptosis in heart failure still
remains to be established. Some studies suggest that
Fig. 2. Events linking oxidative stress and heart failure in
cardiac stress conditions.
116 Singal, Khaper, Palace, and Kumar
apoptosis contributes to only 0.2% of the total
cardiomyocyte death at any given time [110]. Furthermore,
the underlying molecular mechanisms that regulate
this remodelling event are still not fully understood.
However, more details are provided in other
papers in this focussed issue.
Cytokines and Oxidative Stress in
Heart Failure
Increasing evidence from both animal [115] and human
studies (116) have reported elevated levels of cytokines
such as tumor necrosis factor a (TNF-a), interleukin-
1a (IL-1a) and atrial naturietic factor in MI
and failure conditions (Fig. 2). Increased concentrations
of these cytokines were shown to have a direct
relation to the severity of failure [25,116,117]. Recent
studies suggest that the deleterious effect of TNF-a
is receptor-mediated and it also directly activates nitric
oxide, which is cytotoxic to myocardial cells by
virtue of its ability to produce free radicals and cause
apoptosis [118] (Fig. 2). The pathological potential of
TNF-a is demonstrated in a study where transgenic
mice overexpressing TNF-a in the heart developed
cardiomyopathy associated with apoptosis [119]. In a
recent study, it was demonstrated that TNF-a and
Ang II induce hypertrophy in cultured neonatal cardiac
myocytes by virtue of producing free radicals and
antioxidants such as BHA, vitamin E and catalase inhibited
this effect of TNF-a and Ang II by scavenging
the radicals [120]. Another new concept suggests that
TNF-a not only produces PRFO, but is also activated
by hydrogen peroxide, in the presence of a P38MAP
kinase [121]. Further studies are required to clarify
this point. A detailed discussion on these aspects is
presented in other articles in this focussed issue of
the journal.
Conclusions
Although there is convincing evidence from both animal
studies and patients that oxidative stress plays a
very important role in the pathogenesis of heart failure
there are not enough clinical trials which have assessed
the use of antioxidant therapy in the treatment of
heart failure. The laboratory ~ndings described here
suggest newer target sites for the prevention of heart
failure as well as better management of patients by
using appropriate antioxidant therapies.
Acknowledgments
Research reported here was done with grant support from the
Medical Research Council of Canada and the Heart and Stroke
Foundation of Manitoba. Dr. Singal is supported by a career
award from the Medical Research Council of Canada, Dr. Palace
by a fellowship from the Manitoba Health Research Council and
Ms. Khaper by the Heart and Stroke Foundation of Canada.
References
1. Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative
stress in the genesis of heart disease. Cardiovasc Res
1998;40:426–432.
2. Lavoisier A-L. Alterations qu’eprouve 1’air resire. Recueil
des memoires de Lavoisier. 1785, Read to the Societe de
Medicine. Reprinted as part of “Memoires sur la Respiration
et al Transpiration des Animaux” in “Les Maitres de la
Pensee Scienti~que.” Paris: Gauthier-Villaus et cie (eds.),
1920.
3. Smith JL. Pathological effects due to increase of oxygen
tension in air breathed. J Physiol 1899;24:19–35.
4. Gomberg M. An instance of trivalent carbon: Triphenylmethyl.
J Am Chem Soc 1900;22:757–761.
5. Gerschman R, Gilbert DL, Nye SW, Swyer P, Fenn WO.
Oxygen poisoning and X-irradiation: A mechanism in common.
Science 1954;119:623–626.
6. McCord JM, Fridovich I. Superoxide dismutase. An enzymatic
function for erythrocuprein (hemecuprein). J Biol
Chem 1969;244:6049–6055.
7. Halliwell B. Oxidants and human disease: Some new concepts.
FASEB J 1987;1:358–364.
8. Weiss SJ. Oxygen, ischemia and in_ammation. Acta Physiol
Scand 1986;548:9–31.
9. Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS.
Role of free radicals in catecholamine-induced cardiomyopathy.
Can J Physiol Pharmacol 1982;60:1390–1397.
10. Singal PK, Deally CM, Weinberg LE. Subcellular effects of
adriamycin in the heart: A concise review. J Mol Cell
Cardiol 1987;19:817–828.
11. Bolli R. Oxygen-derived free radicals and postischemic myocardial
dysfunction (“stunned myocardium”). J Am Coll
Cardiol 1988;12:239–249.
12. Singal PK, Hill MF, Ganguly NK, Khaper N, Kirshenbaum
LA, Pichardo J. Role of oxidative stress in heart failure
subsequent to myocardial infarction. L’information Cardiologique.
1996;20:343–362.
13. Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK.
Free radicals and the heart. J Pharmacol Toxicol Meth
1993;30:55–67.
14. Singal PK, Petkau A, Gerrard JM, Hrushovetz S, Foerster
J. Free radicals in health and disease. Mol Cell Biochem
1988;84:121–122.
15. Singh N, Dhalla AK, Seneviratne CK, Singal PK. Oxidative
stress and heart failure. Mol Cell Biochem 1995;147:77–81.
16. Saran M, Michel C, Bors W. Reactions of NO with O2
2?.
Implications for the action of endothelium-derived relaxing
factor. Free Radical Res Commun 1989;10:221–226.
17. Singal PK, Kirshenbaum LA. A relative de~cit in antioxidant
reserve may contribute in cardiac failure. Can J
Cardiol 1990;6:47–49.
18. Singal PK, Beamish RE, Dhalla NS. Potential oxidative
pathways of catecholamines in the formation of lipid peroxides
and genesis of heart disease. Adv Exp Med Biol
1983;161:391–401.
19. Kaneko M, Singal PK, Dhalla NS. Alterations in heart sarcolemmal
Ca21 binding activities due to oxygen radicals.
Basic Res Cardiol 1990;85:45–54.
20. Reeves JP, Bailey CA, Hale CC. Redox modi~cation of so-
Oxidative Stress and Heart Failure 117
dium-calcium exchange activity in cardiac sarcolemmal vesicles.
J Biol Chem 1986;201:4948–4955.
21. Kramer JH,Mak IT,Weglicki WB. Differential sensitivity of
canine cardiac sarcolemmal and microsomal enzymes to inhibition
by free radical induced lipid peroxidation. Circ Res
1984;55:120–124.
22. Dixon IM, Kaneko M, Hata T, Panagia V, Dhalla NS. Alterations
in cardiac membrane Ca11 transport during oxidative
stress. Mol Cell Biochem 1990;99:125–133.
23. Ferrari R, Ceconi C, Curello S, Guarnieri C, Calderera CM,
Albertini A, Visioli O. Oxygen-mediated myocardial damage
during ischemia and reperfusion: Role of the cellular defenses
against oxygen toxicity. J Mol Cell Cardiol
1985;17:93–945.
24. Fridovich I. The biology of oxygen radicals. Science 1978;20
1:875–880.
25. Ferrari R, Agnoletti L, Comini L, Gata G, Bachetti T,
Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress
during myocardial ischemia and heart failure. Eur Heart J
1998;19:B2–B11.
26. Lawrence RA, Burk RE. Species, tissue and subcellular
distribution of non-selenium dependent glutathione peroxidase
activity. J Nutr 1978;108:211–215.
27. Freeman BA, Crapo JD. Biology of disease. Free radicals
and tissue injury. Lab Invest 1982;47:412–425.
28. Packer L. Vitamin E is nature’s master antioxidant.
Scienti~c American Science and Medicine 1994;54–63.
29. Packer L. Protective role of vitamin E in biological systems.
Am J Clin Nutr 1991;53:1050–1055.
30. Singal PK, Ghani RA-A; Khaper N, Palace V, Hill MF. Antioxidant
adaptations and cardiac dysfunction: Involvement of
vitamin E. J Adapt Med 1997;1:5–15.
31. Ozer NK, Boscoboinik A, Azzi A. New roles of low density
lipoproteins and vitamin E in the pathogenesis of
atherosclerosis. Biochem Mol Bio Int 1995;35:117–124.
32. Packer JE, Slater TF, Watson RL. Direct observation of a
free radical interaction between vitamin E and vitamin C.
Nature 1979;278:737–738.
33. Foote CS, Denny RW. Chemistry of singlet oxygen VII.
Quenching by b-carotene. J Am Chem Soc
1968;90:6233–6235.
34. Riemersma RA. Epidemiology and the role of antioxidants
in preventing coronary heart disease:A brief overview. Proc
Nutr Soc 1994;53:59–65.
35. Palace VP, Khaper N, Qin Q, Singal PK. Antioxidant potentials
of vitamin A and carotenoids and their relevance to
heart disease. Free Rad Biol Med 1999 26:746–761.
36. Clark IA, Cowden WB, Hunt NH. Free radical-induced pathology.
Medicinal Research Review 1985;5:297–332.
37. Reed DJ. Glutathione: Toxicological implications. Ann Rev
Pharmacol Toxicol 1990;30:603–631.
38. Reed DJ. Glutathione depletion and susceptibility. Pharmacol
Rev 1984;36:35S–33S.
39. Verma A, Hill M, Bhayana S, Pichardo J, Singal PK. Role of
glutathione in acute myocardial adaptation. In: Adaptation
Biology and Medicine: Subcellular Basis, Sharma BK,
Takeda N, Ganguly NK, Singal PK, eds. New Delhi, India:
Narosa Publishers, Vol. 1, 1997;399–408.
40. Ames BN, Cathcart R, Schivears E, Hochstein P. Uric acid
provides an antioxidant defense in humans against oxidant
and radical caused aging and cancer. Proc Natl Acad Sci
USA 1981;78:6858–6862.
41. Bernier M, Hearse DJ, Manning AS. Reperfusion-induced
arrhythmias and oxygen-derived free radicals: Studies with
“anti-free radical” interventions and a free radical-generating
system in the isolated perfused rat heart. Circ Res
1986;58:331–340.
42. Chopra K, Singh M, Kaul N, Andrabi KI, Ganguly NK.
Decrease of myocardial infarct size with desferrioxamine:
Possible role of oxygen free radicals in its ameliorative effect.
Mol Cell Biochem 1992;113:71–76.
43. Forsmark P, Aberg F, Norling B, Nordenbrand K, Dallner
G, Ernster L. Inhibition of lipid peroxidation by ubiquinol in
submitochondrial particles in the absence of vitamin E.
FEBS Lett 1991;285:39–43.
44. Halliwell B, Gutteridge JMC. Lipid peroxidation, oxygen
radicals, cell damage and antioxidant therapy. Lancet
1984;1396–1397.
45. Kappus H. Lipid peroxidation: Mechanisms, analysis, enzymology
and biological relevance. In: Oxidative Stress, Sies
H, ed. London: Academic Press, 1985:273–303.
46. Ceconi C, Cargnoni A, Pasini E, Condorelli E, Curello S,
Ferrari R. Evaluation of phospholipid peroxidation as
malondialdehyde during myocardial ischemia and reperfusion
injury. Am J Physiol 1991;260:H1057–H1061.
47. Sies H, ed. Oxidative Stress, Oxidants and Antioxidants.
London and New York: Academic Press, 1991.
48. Arroyo CM, Kramer JH, Dickens BF, Weglicki WB.
Identi~cation of free radicals in myocardial ischemia/reperfusion
by spin trapping with nitron DMPO. FEBS Lett
1987;221:101–104.
49. Garlick PB, Davies MJ, Hearse DJ, Slater TF. Direct detection
of free radicals in the reperfused rat heart using electron
spin resonance spectroscopy. Circ Res 1987;61:757–760.
50. Currello S, Ceconi C, de Giuli F, Panzali AF, Milanesi B,
Calarco M, Pardini A, Marzollo P, Al~eri O, Messineo F,
Ferrari R. Oxidative stress during reperfusion of human
hearts: Potential sources of oxygen free radicals. Cardiovasc
Res 1995;29:118–125.
51. Levy Y, Bartha P, Ben-Amotz A, Brook JG, Danker G, Lin
S, Hammerman H. Plasma antioxidants and lipid peroxidation
in acute myocardial infarction and thrombolysis. J Am
Coll Nutr 1998;17:373–341.
52. Jeroudi MO, Hartely CJ, Bolli R. Myocardial reperfusion
injury: Role of oxygen free radicals and potential therapy
with antioxidants. Am J Cardiol 1994;73:2B–7B.
53. Ferrari R, Al~eri O, Currello S, Ceconi C, Cargnoni A, Marzollo
P, Pardini A, Caradonna E, Visioli O. Occurrence of
oxidative stress during reperfusion of the human heart. Circulation
1990;81:201–211.
54. Palace V, Kumar D, Hill MF, Khaper N, Singal PK. Regional
differences in non-enzymatic antioxidants in the heart under
control and oxidative stress conditions. J Mol Cell Cardiol
1999 31:193–202.
55. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR.
Canine myocardial reperfusion injury: Its reduction by the
combined administration of superoxide dismutase and
catalase. Circ Res 1984;54:277–285.
56. Chen EP, Bittner HB, Davis RD, Van Trigt P, Folz RJ.
Physiologic effects of extracellular superoxide dismutase
transgene overexpression on myocardial function after ischemia
and reperfusion injury. J Thorac Cardiovasc Surg
1998;115:450–458.
57. Klein HH, Lindert PS, Buchwald A, Nerbendalh K, Kreuzer
H. Intracoronary superoxide dismutase for the treatment of
reperfusion injury. A blind randomized placebo-controlled
trial in ischemic-reperfused porcine hearts. Basic Res
Cardiol 1988;83:141–148.
118 Singal, Khaper, Palace, and Kumar
58. Shattock MJ. Do we know the mechanism of myocardial
stunning? Basic Res Cardiol 1998;93:145–149.
59. Bolli R. Causative role of oxyradicals in myocardial stunning:
A proven hypothesis. Basic Res Cardiol
1998;93:156–172.
60. Li Q, Bolli R, Qiu Y, Tang XL, Murphee SS, French BA.
Gene therapy with extracellular superoxide dismutase attenuates
myocardial stunning in conscious rabbits. Circulation
1998;98:1438–1448.
61. Francis GS, Goldsmith SR, Cohn JN. Relationship of exercise
capacity to resting left ventricular performance and
basal plasma norepinephrine levels in patients with congestive
heart failure. Am Heart J 1982;104:725–731.
62. Rathore N, John S, Kale M, Bhatnagar D. Lipid peroxidation
and antioxidant enzymes in isoproterenol-induced oxidative
stress in rat tissues. Pharmacol Res 1998;38:297–303.
63. Kirshenbaum LA, GuptaM, Thomas TP, Singal PK. Antioxidant
protection against adrenaline-induced arrhythmias in
rats with chronic heart hypertrophy. Can J Cardiol
1990;6:71–74.
64. Singal PK, Tong J. Vitamin E de~ciency accentuates
adriamycin-induced cardiomyopathy and cell surface
changes. Mol Cell Biochem 1988;84:163–171.
65. Doroshow JH. Effect of anthracycline antibiotics on oxygen
radical formation in rat heart. Cancer Res 1983;43:460–472.
66. Siveski-Iliskovic N, Kaul N, Singal PK. Probucol promotes
endogenous antioxidants and provides protection against
adriamycin-induced cardiomyopathy in rats. Circulation
1994;89:2829–2835.
67. Singal PK, Iliskovic N, Li T, Kumar D. Adriamycin
cardiomyopathy: Pathophysiology and prevention. FASEB
J 1997;11:931–936.
68. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy.
N Eng J Med 1998;339:900–905.
69. Myers CE, McGuire WP, Liss RH, In~rm I, Grutzinger K,
Young RC. Adriamycin: The role of lipid peroxidation in
cardiac toxicity and tumour response. Science 1977;19:
165–167.
70. Kaul N, Siveski-Iliskovic N, Thomas TP, Hill M, Singh N,
Singal PK. Probucol improves antioxidant activity and
modulates development of diabetic cardiomyopathy. Nutrition
1995;11:551–554.
71. Paolisso G, D’Amore A, Giugliano D, Ceriello A, Varricchio
M, D’Onofrio F. Pharmacological doses of vitamin E improve
insulin action in healthy subjects and non-insulin-dependent
diabetic patients. Am J Clin Nutr 1993;57:650–656.
72. Giugliano D, Ceriello A, Paolisso G. Diabetes mellitus, hypertension,
and cardiovascular disease: Which role for oxidative
stress? Metabolism 1995;44:363–368.
73. Wohaieb SA,GodinDV.Alterations in free radicals tissue-defense
mechanisms in streptozotocin-induced diabetes in rat.
Effects of insulin treatment. Diabetes 1987;36:1014–1018.
74. Gupta M, Singal PK. Higher antioxidative capacity during a
chronic stable heart hypertrophy. Circ Res 1989;64:398–406.
75. Kirshenbaum LA, Singal PK. Increase in endogenous antioxidant
enzymes protects hearts against reperfusion injury.
Am J Physiol 1993;2265:H484–H497.
76. Dhalla AK, Singal PK. Antioxidant changes in hypertrophied
and failing guinea pig hearts. Am J Physiol 1994;
266(Heart & Circ Physiol 36):H1280–H1285.
77. Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in
transition of hypertrophy to heart failure. J Am Coll
Cardiol 1996;28:506–514.
78. Kirshenbaum LA, Hill M, Singal PK. Endogenous antioxidants
in isolated hypertrophied cardiac myocytes and hypoxia-
reoxygenation injury. J Mol Cell Cardiol 1995;27:
263–272.
79. Prasad K, Gupta JB, Kalra J, Lee P, Mantha SV, Bharadwaj
B. Oxidative stress as a mechanism of cardiac failure in
chronic volume overload in canine model. JMol Cell Cardiol
1996;28:375–385.
80. Hill MF, Singal PK. Antioxidant and oxidative stress
changes during heart failure subsequent to myocardial infarction
in rats. Am J Pathol 1996;148:291–300.
81. Palace VP, Hill MF, Farahmand F, Singal PK. Mobilization
of antioxidant vitamin pools and hemodynamic function following
myocardial infarction. Circulation 1999a;9:121–126.
82. Hill MF, Singal PK. Right and left myocardial antioxidant
responses during heart failure subsequent to myocardial
infarction. Circulation 1997;96:2414–2420.
83. Khaper N, Singal PK. Effects of afterload reducing drugs on
the pathogenesis of antioxidant changes and congestive
heart failure in rats. J Am Coll Cardiol 1997;29:856–861.
84. Khaper N, Hill MF, Pichardo J, Singal PK. Effects of captopril
on myocardial oxidative stress changes in post-MI rats.
In: Angiotensin II Blockade, Dhalla NS, Zahradka, P, Dixon
IMC, Beamish RE. Boston: Kluwer Academic Publishers,
1998; 527–536.
85. Axford-Gately RA, Wilson GJ. Reduction of experimental
myocardial infarct size by oral administration of alpha tocopherol.
Cardiovasc Res 1991;25:89–92.
86. Mickle DA, Li RK, Weisel RD. Myocardial salvage with
trolox and ascorbic acid for an acute evolving infarction.
Ann Thorac Surgery 1989;47:553–557.
87. Massey KD, Burton KP. Alpha-tocopherol attenuates myocardial
membrane-related alterations resulting from ischemia-
reperfusion. Am J Physiol 1989;256:H1192–1199.
88. Klein HH, Pich S, Lindert S, Nibendahl K, Niedman P,
Kreuzer H. Combined treatment with vitamins E and C in
experimental myocardial infarction in pigs. Am Heart J
1989;118:667–673.
89. Klein HH, Pich S, Lindert S, Nebendahl K, Niedman P.
Failure of chronic high dose oral vitamin E treatment to
protect the ischemic-reperfused porcine heart. J Mol Cell
Cardiol 1993;25:103–112.
90. Belch JJ, Bridges AB, Scott N, Chopra M. Oxygen free
radicals and congestive heart failure. Br Heart J
1991;65:245–248.
91. McMurray J, Mclay J, Chopra M, Bridges A, Belch JJF.
Evidence for enhanced free radical activity in chronic congestive
heart failure secondary to coronary artery disease.
Am J Cardiol 1990;65:1261–1262.
92. Diaz-Velez CR. Garcia-Castineiras S, Mendoza-Ramos E,
Hernandez-Lopez E, Increased malondialdehyde in peripheral
blood of patients with congestive heart failure. Am
Heart J 1996;131:146–152.
93. Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey
JL, Zarling EJ. Elevated breath pentane in heart failure
reduced by free radical scavenger. Free Rad Biol Med
1993;14:643–647.
94. Weitz ZW, Birnbaum AJ, Sobotka S, Zarling EJ, Skosey JL.
High breath concentration during acute myocardial infarction.
Lancet 1991;337:933–935.
95. Charney RH, Levy DK, Kalman J, Buchholz E, et al. Free
radical activity increased with NYHA class in congestive
heart failure. J Am Coll Cardiol 1997;29:930–939.
96. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A,
Omran AS, Jeejeebhoy KN. Increased oxidative stress in
Oxidative Stress and Heart Failure 119
patients with congestive heart failure. J Am Coll Cardiol
1998;31:1352–1356.
97. Yucel D, Aydogdu S, Cehreli S, Saydam G, CanatanH, Senes
M, Cigdem Topkaya B, Nebioglu S. Increased oxidative
stress in dilated cardiomyopathic heart failure. Clin Chem
1998;44:148–154.
98. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz
GA, Willet WC. Vitamin E consumption and the risk of
coronary disease in men. N Engl J Med 1993;328:1450–1456.
99. Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner
B, Willett WC. Vitamin E consumption and the risk of
coronary disease in women. N Engl J Med 1993;328:
1444–1449.
100. Singh RB, Niaz MA, Rastogi S. Usefulness of antioxidant
vitamins in suspected acute myocardial infarction (the Indian
experiment of infarct survival -3). Am J Cardiol
1996;77:232–236.
101. Stephens NG, Parsons A, Scho~eld PM, Kelly F, Cheeseman
K, Mitchinson MJ. Randomised controlled trial of vitamin E
in patients with coronary disease: Cambridge Heart Antioxidant
Study (CHAOS). Lancet 1996;347:781–786.
102. Kok FJ, de Bruijn AM, Vermeeren R, Hofman A, van Laar
A, de Bruin M, Hermus RJ, Valkenburg HA. Serum selenium,
vitamin antioxidants and cardiovascular mortality: A
nine year follow-up study in the Netherlands. Am J Clin
Nutr 1987;45:462–468.
103. Hense HW, Stender M, Bors W, Keil V. Lack of an association
between serum vitamin E and myocardial infarction in
a population with high vitamin E levels. Atherosclerosis
1993;103:21–28.
104. Gottlieb RA. Burleson KO, Kloner RA, Babior BM, Engler
RL. Reperfusion injury induces apoptosis in rabbit
cardiomyocytes. J Clin Invest 1994;94:1621–1628.
105. Kajstura J, Liu Y, Baldini A, Li B, Olivetti G, Leri A, Anversa
P. Coronary artery constriction in rats: necrotic and
apoptotic myocyte death. Am J Cardiol 1998;82:30K–41K.
106. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury
L, Tremblay J, Schwartz K, Hamet P. Apoptosis in
pressure-overload induced heart hypertrophy in the rat. J
Clin Invest 1996;97:2891–2897.
107. Buttke TM, Sandstrom PA. Oxidative stress as a mediator
of apoptosis. Immunology Today 1994;15:7–10.
108. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M,
Voipo-Pulkki L-M. Apoptosis in human acute myocardial
infarction. Circulation 1997;95:320–323.
109. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD,
Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA.
Apoptosis in myocytes in end-stage heart failure. N Engl J
Med 1996;335:1182–1189.
110. Olivetti G, Abbi R, Quaini F, Kajstura J, ChengW, Nitahara
JA, Quaini E, DeLoreto C, Beltrami CA, Krajewski S, Reed
JC, Anversa P. Apoptosis in the failing human heart.N Engl
J Med 1997;336:1131–1141.
111. Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L,
Lu N, Huang S, Matzuk MM. Neurodegeneration, myocardial
injury and perinatal death in mitochondrial superoxide
dismutase-de~cient mice. Proc Natl Acad Sci 1996;93:
9782–9787.
112. Kirshenbaum LA, de Moissac D. The bcl-2 gene product
prevents programmed cell death of ventricular myocytes.
Circulation 1997;96:1580–1585.
113. Hockenbery DM, Oltavi ZN, Yin XM, Milliman CL, Korsmeyer
ST. Bcl-2 functions in an antioxidant pathway to prevent
apoptosis. Cell 1993;75:241–251.
114. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V,
Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA.
Tumor necrosis factor alpha-induced apoptosis in cardiac
myocytes. Involvement of the sphingolipid signaling cascade
in cardiac cell death. J Clin Invest 1996;98:2854–2865.
115. Bozkurt B, Kribbs SB, Chubb FJ Jr, Michael LH, Didenko
VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL.
Pathophysiologically relevant concentrations of tumor necrosis
factor-a promote progressive left ventricular dysfunction
and remodelling in rats. Circulation 1998;97:1382–1391.
116. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated
circulating levels of tumor necrosis factor in congestive
heart failure. N Eng J Med 1990;323:236–241.
117. Givertz MM, Colucci WS.New targets for heart failure therapy:
endothelin, in_ammatory cytokines, and oxidative
stress. Lancet 1998;352(Suppl 1):34–38.
118. Blum A, Miller H. Role of cytokines in heart failure. Am
Heart J 1998;135:181–186.
119. Bryant D, Becker L, Richardson J, Shelton J, Franco F,
Peshock R, Thompson M, Giroir B. Cardiac failure in transgenic
mice with myocardial expression of tumor necrosis
factor-alpha. Circulation 1998;97:1375–1381.
120. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M,
Ohe T, Namba M. Inhibitory effects of antioxidants on neonatal
rat cardiac myocyte hypertrophy induced by tumor
necrosis factor-a and angiotensin II. Circulation
1998;98:794–799.
121. Meldrum DR, Dinarello CA, Cleveland JC Jr, Cain BS,
Shames BD, Meng X, Harken AH. Hydrogen peroxide induces
tumor necrosis factor a-mediated cardiac injury by a
p38 nitrogen-activated protein kinase-dependent mechanism.
Surgery 1998;124:291–296.
120 Singal, Khaper, Palace, and Kumar